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Abstract: The estimation of mass diffusion coefficients, through Earth-bound experiments, remains difficult, due to the frequent
occurrence of dominating convective flows resulting from gravity-driven density gradients caused by temperature and concentra-
tion gradients. To partly remedy this, a series of capillary mass diffusion experiments has been performed in microgravity on a
number of different space platforms, sometimes performed on a microgravity isolation mount, to further reduce the platform op-
erational noise referred to as ‘‘g-jitter’’. Theoretical comparisons are sought for the experimental observations. Two numerical
models have been developed based on perturbation theory. We have used the Lado criteria for minimizing the difference in free
energy between the multispecies liquid of interest and a reference hard-sphere liquid. The hard-sphere liquid is characterized by
the rational function approximation of the partial radial distribution functions. The effective embedded atom like glue potential
has been used to model the liquid of interest. This has necessitated introducing the mean coordination number as an additional
parameter. Isothermal compressibility has been used to determine the mean coordination number. The initialization of the numer-
ical solutions, and the extension of solutions over the experimental range of temperatures have been demonstrated for Pb 1 wt %
Au. The model results have been used to estimate the mass diffusion coefficients by applying the Enskog equation to the refer-
ence hard-sphere liquid. For consideration of capillary experiments, a definition of total mass diffusion coefficient, Dtot, has been
introduced to characterize reverse Kirkaldy simultaneous diffusion. The mixed diffusion coefficient estimate is in good agree-
ment with the mixed diffusion coefficient estimated from the velocity correlation of molecular dynamic simulations. Dtot and D11

are in good agreement with the experimental results indicating that reverse Kirkaldy simultaneous diffusion has had an influence
on the experiment. Good agreement between the mixed mass diffusion coefficient and the result from molecular dynamic simula-
tion indicates the perturbation models can predict the mixed coefficient. These models may assist in the analysis of data from
both Earth-bound and microgravity, mass diffusion experiments when the required embedded atom type potentials are available.

PACS Nos: 11.25.Db, 02.60.Nm, 66.10.cg, 61.25.Mv

Résumé : Il demeure difficile d’évaluer les coefficients de diffusion massique dans des expériences sur Terre, à cause des fré-
quents courants de convexion souvent dominants générés par des gradients de densités dus à la gravité et dont la source se trouve
dans les gradients de température et de concentration. Pour remédier partiellement à ce problème, nous avons fait une série d’ex-
périences de diffusion massique en capillaire en état de microgravité à bord de différentes plateformes spatiales, souvent sur un
support d’isolation de microgravité afin de réduire encore plus le bruit opérationnel, appelé fluctuation g, sur les plateformes.
Nous cherchons à comparer à des valeurs théoriques. Nous avons ici utilisé deux modèles numériques basés sur la théorie des
perturbations. Nous avons utilisé le critère de Lado pour minimiser la différence d’énergie libre entre le liquide mixte d’intérêt et
une sphère dure de liquide de référence. Le potentiel effectif de type adhésif pour l’atome incorporé sert à modéliser le liquide à
l’étude. Nous avons dû introduire un nouveau paramètre de coordination moyenne. Nous utilisons la compressibilité isotherme
pour fixer ce nombre de coordination. Nous avons débuté la simulation et avons étendu la solution à un domaine de température
valable pour du Pb à 1 % de Au en poids. Les résultats du modèle ont été utilisés pour estimer les coefficients de diffusion en ap-
pliquant l’équation de Enskog à la sphère dure de liquide de référence. Pour étudier les expériences de diffusion capillaire, nous
avons introduit un coefficient de diffusion massique totale, Dtot, afin de caractériser la diffusion simultanée inverse de Kirkaldy.
Le coefficient de diffusion mixte estimé est en bon accord avec la valeur calculée par corrélation de vitesse en simulation dyna-
mique moléculaire. Dtot et D11 sont en bon accord avec les résultats expérimentaux, indiquant que la diffusion inverse de Kir-
kaldy a eu une influence sur l’expérience. Le bon accord entre les coefficients mixtes de diffusion massique et les résultats de
dynamique moléculaire indique que les modèles perturbatifs peuvent prédire les coefficients mixtes. Ces modèles pourront être
utiles dans l’analyse des données d’expérience sur Terre et en microgravité dans l’espace, lorsque le potentiel effectif de type ad-
hésif est connu.
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1. Introduction
The mass diffusion coefficient, and its relation to other

system variables, is important as a source of fundamental
knowledge and also because of its role in modeling both the
control and optimization of material processing systems. The
coefficient is difficult to measure on Earth because diffusion
is often masked by gravity-riven convective flow originating
from thermally and solute concentration gradient-induced
density gradients. A series of diffusion experiments were
performed by Queen’s University on the Russian Space
Station MIR, by Smith [1], using the Canadian Space
Agency Microgravity Isolation Mount, (MIM), to further re-
duce the effects of environmental and operational sources of
vibration referred to as ‘‘g-jitter’’, now over a decade later,
these remain the only g-jitter free diffusion results available
for analysis. The experimental results obtained for the Pb 1%
wt Au alloy, had been compared with velocity correlation es-
timates from molecular dynamic simulation and the Enskog
hard-sphere-corrected estimates using the radial distribution
function provided by the molecular dynamic simulation in
Scott et al. [2]. Three methods are described in Scott et al.
[3] for using the Enskog equation [4, 5] to estimate mass dif-
fusion coefficients of a dilute binary liquid from a reference
hard-sphere liquid that is chosen to approximate combina-
tions of static structure factor and isothermal compressibility
data of the solvent. One of these methods assumes equal sol-
vent and solute radii and satisfies an isothermal compressi-
bility constraint. The resulting mass diffusion coefficient,
denoted by DB in Scott et al. [3] and here denoted by MB
makes good agreement with several of the mass diffusion co-
efficient estimated here, and is reproduced in some figures
for comparison. A fourth similar method is described in
Scott et al. [6]. These four methods use the rational function
approximation of the partial radial distribution functions,
pRDF, of the hard-sphere liquid developed by Yuste et al.
[7, 8]. Here, another theoretical comparison is sought that
does not use velocity correlation estimates or molecular dy-
namic simulations. Rather, the Enskog equation is applied to
a hard-sphere reference liquid and the rational function ap-
proximation of the pRDF is used. However the hard-sphere
reference liquid is determined by a formal numerical proce-
dure devised from perturbation theory. In the numerical pro-
cedure, embedded atom-like potentials [9, 10], which have
proved to be quite effective in describing liquid-metal alloys,
were used. Since perturbation theory is derived for two point
potentials, while embedded atom-like potentials take into ac-
count all the neighbouring atoms within a specified radius,
an effective embedded atom-like two-point potential is re-
quired. This necessitates introducing a mean coordination
number. Experimental data about the isothermal compressi-
bility of the solvent has been used to give an additional con-
straint for determining the mean coordination number at
different temperatures. The use of the isothermal compressi-
bility data of the solvent limits the method to dilute binary
liquids. However, if isothermal compressibility data are
available for the binary liquid the method should apply at
higher solute concentrations. The result is a self-contained
estimate of the mass diffusion coefficients based on first
solving a system of nonlinear integral equations. Two such
systems and have been considered: one system, Model 2,
with equal hard-sphere solvent and solute radii and one sys-

tem, Model 1, with unequal hard-sphere solvent and solute
radii. Their precise characterization is given in Subsect. 2.6.
Like any systems of nonlinear equations, searching for initial
solutions is a nontrivial task and has been described here for
both systems since similar searches should succeed for other
binary liquids for which embedded atom-like potentials and
isothermal compressibility data are available. In addition,
the existence of only a small number of isolated solutions
has been demonstrated, two for each system.

The combination of the perturbation criteria used here
with effective embedded atom-like potentials , which intro-
duces a mean coordination number, the rational function ap-
proximation for the pRDF of the hard-sphere reference
liquid, and use of experimental isothermal compressibility
data to determine the mean coordination number, is novel.
Figure 15 indicates that the model mixed diffusion coeffi-
cient (notation explained in text) DU

12 makes good agreement
with the velocity autocorrelation estimate ‘‘MD’’ obtained
from molecular dynamic simulation described in ref 2.
Model diffusion coefficients DS4, DU

11, and DU
tot are almost

identical with estimate MB described in ref. 3, and all four
estimates make good agreement with the experimental data
in Smith [1]. This last observation suggests that the capillary
experiment is subjected to reverse Kirkaldy diffusion of the
solvent, and that the mixed diffusion coefficient is not di-
rectly measurable, but must be inferred by application of
models for which DU

tot makes good agreement with the ex-
perimental observation.

Section 2 briefly discusses the perturbation approach used
here with the precise description of Model 1 and Model 2
given in Subsect. 2.6, discusses the general numerical details
of the implementation, describes the initialization process
for both models, the solutions, and the resulting estimates
of the mass diffusion coefficients are exhibited and com-
pared with experimental results from Smith [1]. The paper
ends with conclusions Sect 8.

2. Theory
Starting in the 1970s, a completely self-contained proce-

dure for estimating the properties of a liquid of interest
from the corresponding properties of a reference liquid was
developed based on minimizing the integral functional ex-
pressing the difference or perturbation in free energy be-
tween the liquid of interest and a reference liquid. When
the reference is a hard-sphere liquid, many of its properties
are well known. For example, the Enskog equation [4, 5]
can be applied to the hard-sphere reference liquid to esti-
mate or infer the diffusion coefficients of the liquid of inter-
est and several recent effective approximations are available
for the hard-sphere liquid pRDF [7, 8]. There has been re-
cent interest in applying perturbation methods to liquid
metal alloys [11–13].

For liquids consisting of only one type of atom the basis
of the perturbation model is to consider, at fixed temperature
and volume, or density, the application with increasing pa-
rameter l, of a perturbed interatomic potential

v ¼ vo þ lw

such that, at l = 0, the potential vo is that of the reference
liquid, usually a hard-sphere liquid, and when l = 1, the po-
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tential v = vo + w, is that of the liquid of interest. Through-
out, it is assumed that vo and w are additive potentials, so
the total potential energy is the sum of the potential between
pairs of atoms. While studying equations of state for fluids,
Zwanzig [14] developed the high-temperature expansion for
free energy [15] during which he showed the following in-
equality:

F

kBTN
� Fo

kBTN
þ u1 ð1Þ

where F is the free energy of the liquid of interest, Fo is the
free energy of the reference liquid, N is the number of
atoms in each liquid, and kB is Boltzmann’s constant. For a
reference liquid consisting of a uniform liquid with constant
atom number density r, and radial distribution function g
[15], u1 has the form

u1 ¼
2pr

kBT

Z 1
0

½vðrÞ � voðrÞ�gðrÞr2 dr ð2Þ

Equations (1) and (2) can also be determined using the
Gibbs–Bolgoliubov inequalities [15] that ensure the pertur-
bation process described above leads to a unique thermody-
namic system when the free energy F is minimized. Since
the liquid of interest is not understood in detail, minimiza-
tion of F cannot be achieved directly. However, u1, given
by (2), is expressed in terms of the radial distribution func-
tion of the reference liquid and when this can be approxi-
mated well, such as for the hard-sphere liquid, it is feasible
to minimize u1 giving a lowest upper bound for the free en-
ergy of the liquid of interest. Minimization of the upper
bound gives the best approximate model of the fluid of in-
terest from which its properties such as mass diffusion can
be approximated since u1 is expressible in terms of known
properties of the liquid of interest and the reference liquid.
This perturbation approach has been applied to study Leo-
nard–Jones liquids, and the results compare well with results
from molecular dynamic simulation [16]. The perturbation
approach has also been the basis for several studies to deter-
mine the equation of state for liquids [17]. In addition a cor-
rection for the volume not accessible in a hard-sphere
reference fluid is given in ref 18. In ref. 19, the correction
was approximated by an integral term that could be added
to (2). Although these refinements could be extended to the
multi-species fluid, they were not used here.

A necessary (and sufficient condition for a unique solu-
tion when strict convexity applies), for a minimum of u1
given by (2) is the Lado criterion [20]Z 1

0

exp � vðrÞ
kBT

� �
� exp � voðrÞ

kBT

� �� �
@

@s
½gðrÞ�r2 dr ¼ 0 ð3Þ

where s denotes the reference atom diameter, or some other
length factor effecting vo(r), but assuming vo(r) does not de-
pend on an energy scale [20]. This condition has the addi-
tional property that it provides consistency between the
pressure and energy state equation [15] so the pressure com-
puted by either state equation is the same and so the approx-
imate model gives a thermodynamically consistent system.
This leads to better results than other methods, such as the
WAC ‘‘blip’’ function, (the expression in square brackets
above) criterion [21]. The Lado criterion was extended to

multi-species liquids [22]. For the multi-species case, let Ns
denote the number of species, i, j, and k different species, xi
is the number concentration of species i at equilibrium, si is
the diameter of species i atoms in the reference liquid, vij(r)
is the interatomic potential between species i and i of the li-
quid of interest, vo

ijðrÞ is the interatomic potential between
species i and j of the reference liquid and gij(r) is the partial
radial distribution function between species i and j of the re-
ference fluid. For multi-species liquid, when no energy
scales apply, the Lado criterion for each species k, from l £
k £ Ns is

XNs

i¼1

XNs

j¼1

xixj

Z 1
0

exp � vijðrÞ
kBT

� ��

� exp �
vo

ijðrÞ
kBT

� ��
@

@sk

½gijðrÞ�r2 dr ¼ 0 ð4Þ

To implement these necessary conditions requires numerical
specifications for both the interatomic potentials of the liquid
of interest, vij(r) and of the reference liquid, vo

ijðrÞ, as well as
approximations for the pRDF, gij(r) of the reference liquid.
These requirements are given in the following subsections.

2.1. Hard-sphere reference liquid interatomic potential
specification

The hard-sphere liquid is most fully understood and is
used here, as in most perturbation models, as the reference
liquid. When Ns different species of atoms occur in the
liquid, the hard-sphere liquid is completely determined by
the hard-sphere diameters si for 1 £ I £ Ns. For atoms of
two different species i and j, the diameter is given by the
additive equation:

sij ¼
si þ sj

2

The hard-sphere interatomic potential is infinite up to dia-
meter sij and zero beyond that diameter. For the hard-sphere
reference liquid, the Lado condition for optimality [22] gi-
ven by (4), becomes, for each species k where 1 £ k £ Ns

ek �
XNs

i¼1

XNs

j¼1

xixj

Z vlim
ij ðNcÞ

sij

exp � vijðr;NcÞ
kBT

� �
� 1

� �

� @

@sk

½gijðrÞ�r2 dr ¼ 0 ð5Þ

where the interatomic potentials of the liquid of interest
vij(r, Nc) may depend upon some parameter Nc in addition to
the interatomic distance r, and vlim

ij ðNcÞ denotes the upper limit
of the integral beyond which the two point interatomic potential
is zero. The upper limit also depends upon the parameter Nc.
When embedded atom-like potentials are introduced in Sub-
sect. 2.3, Nc will have the physical interpretation of mean co-
ordination number. Lastly, gij(r) is given by an approximation
of the pRDF of the reference liquid. In this way, the optimal-
ity criteria uses properties of both the liquid of interest and the
reference liquid that are known or can be approximated.

2.2. Hard-sphere partial radial distribution function
approximation

For the single species case [23] and multispecies case [24]
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approximations of the hard-sphere pRDF are available by sol-
ution of the Percus–Yevick (PY) integral equations. A detailed
derivation of the solution for the single species case is given
in Hansen et al. [15]. However for the PY approximation, the
pressure and isothermal compressibility equations of state are
not consistent and so do not give a thermodynamic system.
This problem was resolved using a rational function approxi-
mation, RFA, first for a single species fluid [7] then for a mul-
tispecies fluid [8]. The RFA is a fairly recent approximation
and has proved to be just as good as some more recent and
more complex approximations [25, 26]. Mathematica software
is available for implementing the RFA approximation [27]. A
brief introduction to the rational function approximation and
a description of the input variables required to use the
Mathematica implementation is given in ref. 3.

2.3. Interatomic potentials of liquid of interest Pb 1 wt %
Au

The embedded atom method, EAM [9, 10], is an n-atom
potential that includes the contribution from electrons sur-
rounding the atoms within a prescribed radius of any given
atom. It has been effective in describing pure liquid metals
and liquid metal alloys. For this reason embedded atom like
potentials were chosen here to give the interatomic potential
of the liquid of interest. Fortunately, for the Pb 1 wt % Au
liquid studied by Smith [1] embedded atom-like glue poten-
tials are available for lead [28] and for gold [29]. An ap-
proximation used for the missing Pb–Au interatomic
potential is given by eq. (6) of Landa et al. [30]. Hopefully
EAM-like potentials are available for some of the other bi-
nary systems considered in Smith [1]. Effective two point
potentials, necessary for the perturbation theory, were de-
rived by applying the effective EAM, EEAM method de-
scribed in Foiles [31].

The EEAM requires an estimate of the mean electron den-
sity in the neighbourhood of each atom. Because glue-type
potentials were used, this requirement is replaced by the re-
quirement of specifying the mean coordination number, Nc.
For the EEAM, Nc is an additional parameter required to
specify the interatomic potential as suggested in (5). For the
fcc crystal the mean coordination number is Nc = 12, and for

the liquid state lower values of Nc are expected. The intera-
tomic potentials of the liquid of interest vij(r, Nc) occur in the
exponential term in the optimality criteria (5) for the radii of
the corresponding hard-sphere reference liquid. For the nu-
merical implementation, it is necessary to anticipate how
vij(r, Nc) will effect the numerical results. Figures 1–3 show
the three effective two point potentials for the Pb 1 wt % Au
liquid at Nc = 11.7. The units are length in angstroms, Å, and
energy in electron volts, eV.

Notice from Figs. 1–3 that the potentials become zero be-
yond a finite radius vlim

ij ðNcÞ, which is different for each pair
ij, and it was confirmed that it also varies with Nc. Because
of the minus sign in the exponential, the potential at low val-
ues of r has greater effect on the integral. Once vij(r, Nc) = 0,
the [ ] term occurring in each integral in (5) is zero.

The potentials are quite soft and remain finite at r = 0.
The best fits by an inverse power law are also shown. Such
approximations in earlier perturbation models reduce numer-
ical calculation. However, since in this case, the fit is not
very close, the potentials themselves were used in all calcu-
lations. It is also of interest that the gold potential vAuAu in
Fig. 3 is much higher than the lead potential vPbPb in Fig. 1
and the mixed potential vPbAu in Fig. 2 lies between the
other two potentials.

Since the EEAM requires an additional parameter (for the
glue type potentials, the mean coordinate number Nc) an ad-
ditional constraint is required to determine this parameter. In
the following two subsections, two constraints are described
for determining Nc.

2.4. Isothermal compressibility constraint for Nc
The fluid density is required at each temperature. Experi-

ments by Schwaneke et al. [32] indicate that the density, N/
Å3, of liquid Pb 1 wt % Au is well approximated by the lin-
ear relation

r ¼ :03223� :40538� 10�5ðT � 273Þ ð6Þ

Values for the isothermal susceptibility, the limit as wave-
length goes to infinity of the static structure factor, of liquid
lead are found in refs. 33 and 34. From this the following

Fig. 1. Pb–Pb effective two point EAM potential [28, 31] with Nc = 11.7 and inverse power fit.
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expression for the isothermal susceptibility as a linear func-
tion of the temperature can be derived:

cexðTÞ ¼ �0:011043395þ 0:3230992� 10�4T

There are no units since the static structure factor is nondi-
mensional. For low solute concentrations, this leads to the
following expression for the experimental isothermal com-
pressibility of the liquid alloy:

cT
exðTÞ ¼

cexðTÞ
rðTÞkBT

ð7Þ

Development of the rational function approximation for the
pRDF [8] provides an approximation for the isothermal
compressibility. Briefly, for n = 1, 2, 3, and species radii
si, let

xn ¼ r
XNs

i¼1

xið2siÞn ð8Þ

and define the volume packing fraction by

h ¼ p

6
x3 ð9Þ

Then the isothermal compressibility is given by

cT
c ðT ; s1; � � �; sNs

Þ ¼ 1

kBT r

ð1�hÞ2 þ p
x1x2

ð1�hÞ3 þ p2

36
x3

2
9�4hþh2

ð1�hÞ4
� 	 ð10Þ

Setting (7) equal to (10) gives an additional constraint, the
isothermal compressibility constraint, for determining the
mean coordination number Nc

cT
c ðT ; s1; � � �; sNs

Þ � cT
exðTÞ ¼ 0 ð11Þ

Since (11) depends of the hard-sphere radii, while (5) de-
pend on Nc, (11) and (5) form a simultaneous system for
the radii and mean coordination number Nc.

2.5. Mean coordination number constraint for Nc
For a multispecies liquid, the mean coordination number

is often estimated by integrating the partial radial distribu-
tion functions [15]. A computed mean coordination number,

Fig. 2. Pb–Au effective two point EAM potential [30, 31] with Nc = 11.7 and inverse power fit.

Fig. 3. Au–Au effective two point EAM potential [29, 31] with Nc = 11.7 and inverse power fit.
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denoted by compNc, is defined by

compNcðT ; s1; � � �; sNs
;NcÞ ¼ 4prðTÞ

XNs

i¼1

XNs

j¼1

xixj

�
Z Rmin

ij ðNcÞ

sij

gijðrÞr2 dr ð12Þ

The upper limit of each integral, Rmin
ij ðNcÞ, is the first

minimum of gij(r) beyond sij. The mean coordination num-
ber constraint is defined by

compNcðT ; s1; � � �; sNs
;NcÞ � Nc ¼ 0 ð13Þ

2.6. Statement of perturbation model
The perturbation model is now defined as the following:

Model 1: At a given temperature, T, corresponding den-
sity, r(T), given by (6), and given species number con-
centrations, xi, 1 £ i £ Ns, (5) and (11) or (13) give Ns +
1 nonlinear integral equations, which (uniquely) deter-
mine the radii of the corresponding hard-sphere reference
liquid and the mean coordination number Nc. This com-
pletely determines the hard-sphere reference liquid, while
taking into account features of the interatomic potentials,
through the solution for Nc.

For a binary alloy with low solute concentration, it is rea-
sonable to assume both species have the same hard-sphere
radius. This adds the constraint, s11 – s22 = 0, to the optimi-
zation. Introducing a scalar Lagrange multiplier, l, the opti-
mality conditions become

e1 þ l ¼ 0

e2 � l ¼ 0

and taking the sum of these two equations gives the neces-
sary condition

e1 þ e2 ¼ 0 ð14Þ

For a low solute concentration two species alloy, for
which it is assumed the solvent and solute atoms have the
same radius, the perturbation model is defined as follows:

Model 2: At a given temperature, T, corresponding den-
sity, r(T), and given species number concentrations, xi, l
£ i £ Ns, (15) and (11) or (13) give two nonlinear integral
equations, which (uniquely) determine the one radius of
the corresponding hard-sphere reference liquid and the
mean coordination number Nc.

The mass diffusion coefficients of the liquid of interest
are then inferred from the Enskog equation applied to the
hard-sphere reference liquid. In particular

Dij ¼
3

8rgijðsijÞs2
ij

kBT

2pmij

 !1=2

ð15Þ

with species i having mass mi, species i and j having reduced
mass mij = mimj/(mi + mj), interspecies diameters
sij = (si + sj)/2, with the hard-sphere diameters si given by
the solution of (5), and the values of the hard-sphere pRDF
gij(sij) given by the rational function approximation [8]
discussed in Subsect. 2.2. A short derivation of the Enskog
equation is given in ref. 3.

3. Numerical considerations

The partial derivatives in (5) were approximated using
central differences with a step size equal to sk � 10–2. This
second-order method was chosen because it requires only
two function evaluations, thus reducing CPU demand. The
integrals in (5) and (12) were approximated using the simple
fourth-order Simpson’s rule with at least 160 panels. For the
details about both methods see ref. 35. The programs for the
RFA approximation of the hard-sphere pRDF [27] are hy-
brid programs, partially symbolic and partially numerical,
written in Mathematica [36]. The additional programming
for solving the integral equations, constraints for Nc and sub-
sequent estimation of diffusion coefficients required here,
was also written in Mathematica.

Nonlinear equation solvers produce a series of approxi-
mate solutions by an iterative Newton–Raphson-like process
until the difference between these is less than a prescribed
tolerance or divergence is evident. However, an initial esti-
mate of the solution must always be supplied. Initialization
is discussed in the next section.

4. Initialization

For nonlinear systems there is no general procedure for
finding an initial solution. Rather some systematic search
procedure is required for generating initial solutions. Initial-
ization procedures are described here for Model 1 and
Model 2.

Fig. 4. Model 1 First step at T = 602 K with s11 = s22 and a low
value of mean coordination number Nc & 10.18. Contours of error
functions e1, continuous lines, and e2, broken lines, are shown. A
solution s11 & 1.48 Å and s22 & 0.92 Å is given by the intersec-
tion of the e1 = 0 and e2 = 0 contours. The large ranges of s11 and
s22 over which one solution has been found suggest there is a rela-
tively small number of isolated solutions.
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4.1. Initialization for Model 1
Initialization was done at a temperature of T = 602 K,

near the melting temperature Tm, so the ionic radii rPb =
1.746 Å and rAu = 1.44 Å would be relevant in determining
the range of radii over which to search. But T = 602 K is
high enough above Tm to avoid any irregularities in the
liquid state interatomic potentials that might develop near
Tm. Although a full search over all three variables is possi-
ble, it always is more manageable to take two at a time.

First step:
Equations e1 and e2 defined by (5) were evaluated over a

large range of values for s1 and s2. A constant value of Nc =
10.18 was chosen to represent a dense liquid. The results are
shown in Fig. 4.

Only one solution of e1 = 0 and e2 = 0 occurs. This is at
s11 & 1.48 Å and s22 & 0.92 Å. However, at Nc = 10.18
these two radii do not necessarily solve (11).

Second step:
Nc is increased incrementally by DNc = 0.01 with the

equations e1 = 0 and e2 = 0 resolved at each increment using
the previous values of s11 and s22 as initial estimates. This
is shown in Fig. 5. At Nc & 10.88 the isothermal compres-
sibility has decreased until it equals the experimental value
and (11) is satisfied. The resulting initial solution, the upper
initial solution, is shown in Table 1.

Preliminary calculations suggest a second initial solution
might exist at high mean coordination numbers. Starting
from the upper initial solution, Nc was again increased incre-
mentally. The results are shown in Fig. 6. Initially the iso-

thermal compressibility decreases, but after reaching a
minimum, it increases and finally satisfies (11) at Nc &
11.6. This determines a second initial solution, the initial
lower solution shown in Table 1. Since the isothermal com-
pressibility continues to increase until Nc reaches the fcc
crystal limit of Nc = 12, no additional solutions are indi-
cated.

4.2. Initialization for Model 2
For Model 2 the solvent and solute radii are equal. Only

two equations (15) and (11) must be evaluated over suitable
ranges of the one radius s11, and mean coordination number
Nc. The results are shown in Fig. 7.

Only two possible solutions are indicated at S3 and S4 in
the Fig. 7. The S3 and S4 subregions are shown in more de-
tail in Figs. 8 and 9. Both Figs. 8 and 9 show well-defined
unique solutions with contours intersecting with different
tangent lines. The two initial solutions, the initial S3 solu-
tion, and initial S4 solution are shown in Table 1.

For both Model 1 and Model 2 two initial solutions have
been found. The extension of each of these solutions is con-
sidered in the next section.

5. Extension of solutions through
experimental temperature range

For Model 1, two initial solutions referred to as the upper
and lower initial solution, have been found. These two solu-
tions are extended across the experimental temperature
range by increasing, incrementally, the temperature usually
with an increment DT = 1 K. At each increment, the three
unknowns (s11(T + DT), s22 (T + DT), and Nc (T + DT))
are found by simultaneously solving (5) and (11) using the
most recent solutions (s11(T), s22 (T), and Nc (T)) as the ini-
tial estimate.

For Model 2, two initial solutions, the initial S3 and ini-
tial S4 solutions, have been found. These two solutions are
also extended across the experimental temperature range by

Fig. 5. Model 1 Second step at T = 602 K by incrementally increasing the mean coordination number Nc by DNc = 0.01. Starting from s11

and s22 given in Fig. 4, equations e1 and e2 are solved at each increment, using the previous radii as the initial estimate, after which the
isothermal compressibility condition given by (11) is tested. At Nc & 10.88 the correct isothermal compressibility is satisfied giving a so-
lution of all three equations, referred to as the upper solution, exhibited in Table 1.

Table 1. Initial solutions.

Model Name s11 s22 Nc

Model 1 Upper 1.64379 1.16756 10.88010
Model 1 Lower 1.63870 1.74842 11.61010
Model 2 S3 1.63993 1.63993 11.60424
Model 2 S4 1.63993 1.63993 10.92532
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incrementally increasing the temperature. At each increment
the two unknowns (s11(T + DT) and Nc (T + DT)) are found
by simultaneously solving (14) and (11) or (13) using the
most recent solutions (s11(T), and Nc (T)) as the initial esti-
mate. For the S3 solution (13) was used in place of (11) at
higher temperatures.

For both Model 1 and Model 2 the inverse function theo-
rem provides conditions for uniqueness of the extension. An

accuracy goal of four was used. This means the first four
digits of calculations of the radii and mean coordination
number are signifigant. This is reasonable since the radii
are in Ångströms and the mean coordination number is usu-
ally thought of as an integer. An accuracy goal of four re-
sulted in convergence in under 20 iterations. However,
convergence was never achieved with a higher accuracy
goal. This probably originates with the second-order approx-
imation of the partial derivatives in (5) and in practise may
limit the use of Model 1 to a small number of species unless
symbolic partial derivatives are available.

Fig. 6. Model 1 at T = 602 K by incrementally increasing Nc as described in Fig. 5, starting from the upper solution. At Nc & 11.6 the
correct isothermal compressibility is satisfied again giving a second solution, the lower solution, exhibited in Table 1.

Fig. 7. Model 2 initial search at T = 602 K with s11 = s22. Con-
tours of error function e1 + e2, continuous lines, and cT

ex � cT
c , bro-

ken lines, are shown. Two possible solutions are indicated at S3
and S4 at the intersection of the e1 + e2 = 0 and cT

ex � cT
c ¼ 0 con-

tours. The large ranges of s11 and Nc over which two possible so-
lutions have been found suggest there are a relatively small number
of isolated solutions.

Fig. 8. Model 2 initial search at T = 602 K with s11 = s22 near S3
in Fig. 7. A solution, the initial S3 solution, is indicated at s11 &
1.6398 Å and Nc & 11.604, by intersection of contours at positive
angles. The solution is exhibited in Table 1.
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6. Solutions for Model 1 and Model 2

For Model 1 at temperature T a solution (s1, s2, Nc) con-
sists of the hard-sphere reference solvent and solute radii and
mean coordinate number. Two initial solutions for Model 1,
the upper and lower initial solutions, were found in Subsect.
4.1. For Model 2 at temperature T a solution (s1, Nc) con-
sists of the hard-sphere reference solvent and solute radius
and mean coordinate number. Two initial solutions for
Model 2, the S3 and S4 initial solutions, were found in Sub-
sect. 4.2. The method for extending both model solutions
was described in Subsect. 5. The resulting solutions are

shown in Figs. 10–12 as functions of temperature over the
temperature range of experimental data in Smith [1].

For all four solutions the Pb hard-sphere solvent radius,
s11, at = 602 K is consistent with the radial distribution
function nearest peak distance for liquid Pb near the melting
temperature, dPb = 3.39 Å, listed in Table 2 of Protopapas et
al. [37], and always less than the Pb ionic radius rPb =
1.746 Å. The S3 and S4 solutions are essentially identical
until the S3 solution ends abruptly. The S3 solution was ex-
tended using (13) in place of (11) and, from Figs. 10 and 12,
it is clear the mean coordination number constraint gives a
nearly constant solution.

Fig. 9. Model 2 initial search at T = 602 K with s11 = s22 near S4
in Fig. 7. A solution, the initial S4 solution, is indicated at s11 &
1.6398 Å and Nc & 10.925, by intersection of contours at positive
angles. The solution is exhibited in Table 1.

Fig. 10. Pb solvent hard-sphere radius, s11, in éngstroms, of all four
solutions versus temperature T K. The lower solution ends abruptly
at T & 790 K, with a marked change in slope. The equal radii solu-
tions S3 and S4 are essentially identical until S3 ends abruptly at
T & 910 K, which is seen more clearly in Fig. 12. The S3 solution
has been extended beyond T & 890 K, where Nc = compNc using
(13). Notice the mean coordination number criteria is qualitatively
quite different from the other solutions and remains almost constant.
Also the radius values at T = 602 K of all the solutions, including
the upper solution, are consistent with the radial distribution func-
tion nearest peak distance for liquid Pb near the melting temperature
dPb = 3.39 Å, listed in Table 2 of Protopapas et al. [37].

Fig. 11. Au solute hard-sphere radius, s22, in éngstroms of the
lower and upper solutions versus temperature T K. The lower solu-
tion ends abruptly at T & 790 K, with an almost infinite slope, and
throughout s22 is greater than the Au ionic radius 1.44 Å. However,
for the upper solution, s22 remains less than the Au ionic radius
1.44 Å.

Fig. 12. Mean coordination number Nc of all solutions versus tem-
perature T K. The pairing of the upper solution with the equal ra-
dius S4 solution and the lower solution with S3 is evident. It is
clear that the S3 solution ended abruptly at T & 910 K where Nc

& 12, which denotes solid fcc crystal, at which point the liquid
isothermal compressibility criterion cannot be satisfied. The exten-
sion of S3 using (13) remains almost constant.
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Figure 11 shows that the Au hard-sphere solute radius,
s22, remains below the Au ionic radius rAu = 1.44 Å for the
upper solution, but remains above this value for the lower
solution. Also the lower solution ends abruptly at T & 790
K, with an almost infinite slope.

Figure 12 shows the natural pairing of the upper solution
with S4 and the lower solution with S3. Both the upper solu-
tion and S4 represent liquids with lower mean coordination
number Nc. The lower solution and S3 represent a transition
to a glassy solid with high mean coordination number near to
that of the fcc crystal value of Nc = 12. This is inconsistent
with the experimental isothermal compressibility data for
liquid Pb. For the lower solution, satisfying (11) leads to an
almost infinite rate of increase of s22 at T & 790 K. For S3
an abrupt stop occurring at T & 910 K where Nc & 12.

Several properties of the liquid of interest, in this case Pb
1 wt % Au could be inferred from these solutions for a hard-
sphere reference liquid. This includes an approximate equa-
tion of state and all thermodynamic variables that can be de-
termined from partial derivatives of the equation of state.
However, for this study, the practical application was to de-
termine the mass diffusion coefficients by use of the Enskog
eq. (15) and make comparisons with the experimental results
in Smith et al. [1]. This is done in the next section.

7. Inferred mass diffusion coefficients and
comparison with experimental results

High-quality experimental observations of the mass diffu-
sion coefficient for the Pb 1 wt % Au liquid alloy performed
in microgravity with additional isolation from ‘‘g-jitter’’ are
available in ref. 1 by Smith. In this section, the mass diffu-
sion coefficients inferred from Model 1 and Model 2 by ap-
plying (15) are compared with these experimental
observations.

First the capillary mass diffusion apparatus is indicated
schematically in Fig. 13. An initial Au gradient exists be-
tween the solute plug and the solvent column resulting in
Au diffusion into the solvent column. However, an initial
Pb gradient also exists between the solvent column and the
solute plug resulting in a reverse Kirkaldy effect [38], gener-
ating diffusion of Pb into the solvent plug. To describe the
simultaneous diffusion of both species a total diffusion coef-
ficient Dtot was introduced in ref. 3. Although not used here
in any calculations, the Green–Kubo [15] velocity correla-
tion expression for mass diffusion coefficients is most in-
structive for motivating the definition of Dtot. Weighing the
species velocity by the species concentrations gives a mixed

velocity field vðtÞ ¼
XNs

i¼1
xiviðtÞ. Applying the Green–

Kubo elation to the mixed velocity field gives the following
expression for the total diffusion Dtot:

Dtot ¼
1

3

Z 1
0

XNs

i¼1

xiviðtÞ �
XNs

j¼1

xjvjð0Þ
* +

dt ¼
XNs

i¼1

x2
i Dii ð16Þ

Diffusion coefficients versus temperature computed using
(15) are shown for the lower solution and S3 solution in
Fig. 14. The large values of s22 given by the lower solution
result in low values of DL

12 and DL
22. Also, DL

22 decreases
with temperature, which suggests inconsistency between a
transition into a glassy solid at high coordination numbers
and use of the isothermal compressibility constraint with ex-
perimental data for liquid Pb. DL

11 and DL
tot computed using

(16) are almost identical to MB a solution assuming equal
solvent and solute radii and satisfying the isothermal com-
pressibility constraint described by Scott et al. [3]. This indi-
cates that the isothermal compressibility constraint is very
important. DS3 is also almost identical to the MB solution
except where S3 was solved using the mean coordination
number constraint, where DS3 is lower, indicating the mean
coordination number constraint is not suitable and emphasiz-
ing the importance of the isothermal compressibility con-
straint. DL

11, DL
tot, DS3, and MB make good agreement with

the experimental data of Smith [1] indicating the capillary
experimental essentially measures Dtot.

Diffusion coefficients versus temperature are shown for
the upper solution and S4 solution in Fig. 15. The smaller
values of s22 given by the upper solution result in high val-
ues of DU

12 and DU
22. Also, DU

12 is in reasonable agreement
with the velocity correlation estimate of the mixed diffusion
coefficient obtained from the molecular dynamic simula-
tions, (MD), of Scott et al. [2]. DU

11, DU
tot, and DS3 are almost

identical to MB in Scott et al. [3], again indicating the im-
portance of the isothermal compressibility constraint. DU

11,
DU

tot, DS4, and MB make good agreement with the experi-
mental data of Smith [1].

The description of initialization in Sect. 4 and Figs. 4–9
therein as well as the description of the extension process in
Sect. 5 indicate that the solutions used here have not been
forced or manipulated. The close agreement between DU

12 and
‘‘MD’’ from [2], and the close agreement between DU

tot and
DU

11 and the experimental results of Smith [1] are a conse-
quence of the properties of the optimality criteria (5), effec-
tive embedded atom-like glue potentials described in
Subsect. 2.3, the isothermal compressibility constraint de-
scribed in Subsect. 2.4, and the rational function approxima-
tion of the hard-sphere pRDF described in Subsect. 2.2. Some
of the loss of agreement with increasing temperature may re-
sult from the low-accuracy goal required for convergence.
This might be avoided by extending the solutions from initial-
izations made at several intermediate temperatures.

8. Conclusions
Two numerical models Model 1 and Model 2 limited to a

binary liquid have been developed for describing dilute Ns-
species liquids. The models are based on perturbation theory
in which a minimum of an upper bound on the difference in
internal energy between the liquid of interest and a reference
hard-sphere liquid is sought. The Lado minimization criteria
[20, 22] is applied. To provide the pRDF of the reference
hard-sphere alloy, the recent and effective rational function

Fig. 13. Schematic of Pb 1 wt % Au capillary diffusion apparatus.
Initial pure Pb solvent plug and Pb 1 wt % Au solute plug.
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approximation developed by Yuste et al. [7, 8] has been
used. To describe the liquid of interest a two-point effective
potential based on the embedded atom-like glue potential of
Ercolessi et al. [28, 29] has been used. An additional param-
eter, the mean coordination number, is required to com-
pletely specify the effective two-point potential. The mean
coordination number was determined by adding one of two
possible constraints to the optimization procedure. Setting
the isothermal compressibility approximation given by the
rational function approximation equal to available experi-
mental values of the isothermal compressibility gave one
constraint, the isothermal compressibility constraint. Setting
the mean coordination number equal to the coordination
number computed using the partial radial distribution func-

tions gave a second constraint, the mean coordination num-
ber constraint. Numerical solutions were obtained for a Pb 1
wt % Au liquid. The initialization process indicating two
solutions, one at low mean coordination number, Nc < 11,
and one at a high mean coordination number, Nc > 11.6, for
both models was described and demonstrated as well as the
process to extend the solutions to higher temperatures. The
following remarks characterize the solutions.

Initial solutions having Nc > 11.6 tended to stop at lower
temperatures as the solute radius grows very quickly or Nc
reaches the fcc crystal value of Nc = 12. With Nc so high, these
solutions represent transition from a liquid to a glassy solid and
develop an inconsistency with the isothermal compressibility
constraint that uses experimental data for liquid Pb.

Fig. 14. Diffusion coefficients versus temperature. Experimental data, circles, and linear fit, Smith [1]. Mass diffusion coefficients DL
11, DL

12,
and DL

22 of lower solution, extrapolated linearly above T = 790 K as broken lines. DL
tot is computed using (16). DS3 of equal radius solution

S3, broken white line, and broken line above T & 910 K. MB, thick broken line, from Scott et al. [3]. Note that DL
22 decreases with tem-

perature. Note that MB, DL
11, DL

tot, and DS3 are almost identical and make good agreement with the experimental data especially at low tem-
peratures.

Fig. 15. Diffusion coefficients versus temperature. Experimental data, circles, and linear fit, Smith [1]. Mass diffusion coefficients DU
11, DU

12,
and DU

22 of upper solution. DU
tot computed using (16). DS4 of equal radius solution S4. MD and linear fit, long broken line, from Scott et al.

[2]. MB, thick broken line, from Scott et al. [3]. Note that MB, DU
11, DU

tot, and DS4 are almost identical and make good agreement between
the experimental data especially at low temperatures. Also note the good agreement between MD and DU

12.
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The initial solutions with Nc < 11 have been extended
across the temperature range of the experimental data of
Smith [1]. In all cases the hard-sphere solvent radius at T =
602 K is consistent with the radial distribution function near-
est peak distance for liquid Pb near the melting temperature
dPb = 3.39 Å, listed in Table 2 of Protopapas et al. [37].

Although only the one binary liquid has been considered
it is believed the models will apply to other binary liquids,
and at higher solute concentrations when the isothermal
compressibility of the binary liquid is known, and to a
higher number of species if certain limitations in estimating
partial derivatives in the minimality criteria can be over-
come. The models have been used to estimate the mass dif-
fusion coefficients of Pb 1 wt % Au liquid by applying the
Enskog equation to the reference hard-sphere liquid.

The estimates have been compared with the experimental
observations of Smith [1]. To aid in the comparison, a total
mass diffusion coefficient Dtot has been defined for applica-
tion in situations were reverse Kirkaldy effect simultaneous
diffusion may be in effect.

The almost identical values of MB from ref. 3, with DL
11,

DL
tot, DS3, DU

11, DU
tot, and DS4 show the importance of the iso-

thermal compressibility constraint. This is further indicated
by the lower values of DS3 when the alternative mean coor-
dination number constraint is used. The importance of the
isothermal compressibility constraint is perhaps obvious be-
cause the mass diffusion coefficients can be determined
from the structure factor (Chapt. 22 in ref. 5). The close
agreement of these estimates with the experimental data of
Smith [1], indicate that the reverse Kirkaldy effect (simulta-
neous diffusion) has been influential. This conclusion was
also reached in ref. 3.

The close agreement between DU
12 and the the velocity

correlation estimate of the mixed diffusion coefficient ob-
tained from molecular dynamic simulations of Scott et al.
[2] indicate that a good estimate of the mixed diffusion coef-
ficient can be achieved using Model 1. However, in the case
of capillary experiments, this can be tested only indirectly
through comparison of Dtot with the experimental data.

Model 1 and Model 2 may assist in the analysis of data
from both Earth-bound and microgravity mass diffusion ex-
periments.
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